Thesis: Mechanisms of interaction with biological tissue

Sample Thesis Paper

Ultrasound, when subjected to an individual, generally constitutes compression and expansion cycles that continue to deliver a positive/negative expression in alternating combination. As a result, the molecules on which the waves are exerted a force with attempts to pull the molecules apart and then push them together (Aljarboua, 2008). Therefore, the negative cycle of each pulse introduces a cavity into the molecules. Since the human body fundamentally constitutes pure liquids, the tensile strengths are generally quite high and they attempt to exert a force for the prevention of the creation of cavities.

However, the gases trapped within the body tissues serve to bring about a decrease in the tensile strength and allow the ultrasound waves to create the gaps and the conjunctions during their subjection. As a result, the gases are eventually channel out of their pockets and the molecule eventually reaches a size that is no other than critical (Aljarboua, 2008). At a time like this, the subjection of ultrasound in high intensity or the continuous subjection of a low intensity ultrasound can cause the weakened molecule to implode.

As the process continues, the absorption capacity of the cavity created by the release of the gases begins to rise until it reaches a critical state, shortly after which it implodes. This implosion causes the number of unusual chemical reactions to take place within the proximity of the imploded cavity (Aljarboua, 2008). An exceptionally high temperature can be created as a result of the implosion and the pressure may increase just as extensively during the implosion. Fluid is generally sent at high speeds causing small particles to be propelled at just as high and exceptional speeds.

Please order custom thesis paper, dissertation, term paper, research paper, essay, book report, case study from the Order Now page.